The hydrological cycle response to cirrus cloud thinning

نویسندگان

  • Jón Egill Kristjánsson
  • Helene Muri
  • Hauke Schmidt
چکیده

Recent multimodel studies have shown that if one attempts to cancel increasing CO2 concentrations by reducing absorbed solar radiation, the hydrological cycle will weaken if global temperature is kept unchanged. Using a global climate model, we investigate the hydrological cycle response to “cirrus cloud thinning (CCT),” which is a proposed climate engineering technique that seeks to enhance outgoing longwave radiation. Investigations of the “fast response” in experiments with fixed sea surface temperatures reveal that CCT causes a significant enhancement of the latent heat flux and precipitation. This is due to enhanced radiative cooling of the troposphere, which is opposite to the effect of increased CO2 concentrations. By combining CCT with CO2 increase in multidecadal simulations with a slab ocean, we demonstrate a systematic enhancement of the hydrological cycle due to CCT. This leads to enhanced moisture availability in low-latitude land regions and a strengthening of the Indian monsoon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The climatic effects of modifying cirrus clouds in a climate engineering framework

The climatic effects of climate engineering—or geoengineering—via cirrus cloud thinning are examined. Thinner cirrus clouds can allowmore outgoing longwave radiation to escape to space, potentially cooling the climate. The cloud properties and climatic effects due to perturbing the ice crystal fall speed are investigated in a set of hemispheric scale sensitivity experiments with the Community E...

متن کامل

Cirrus Cloud Properties and the Large-Scale Meteorological Environment: Relationships Derived from A-Train and NCEP–NCAR Reanalysis Data

Empirical knowledge of how cirrus cloud properties are coupled with the large-scale meteorological environment is a prerequisite for understanding the role of microphysical processes in the life cycle of cirrus cloud systems. Using active and passive remote sensing data from the A-Train, relationships between cirrus cloud properties and the large-scale dynamics are examined. Mesoscale cirrus ev...

متن کامل

Midlatitude Cirrus Clouds and Multiple Tropopauses from a 2002-2006 Climatology over the SIRTA Observatory

This study present a comparison of lidar observations of midlatitude cirrus clouds over the SIRTA observatory between 2002 and 2006 with multiple tropopauses (MT) retrieved from radiosounding temperature profiles. The temporal variability of MT properties (frequency, thickness) are discussed. Results show a marked annual cycle, with MT frequency reaching its lowest point in May (~18% occurrence...

متن کامل

Cirrus cloud seeding: a climate engineering mechanism with reduced side effects?

Climate engineering, the intentional alteration of Earth's climate, is a multifaceted and controversial topic. Numerous climate engineering mechanisms (CEMs) have been proposed, and the efficacies and potential undesired consequences of some of them have been studied in the safe environments of numerical models. Here, we present a global modelling study of a so far understudied CEM, namely the ...

متن کامل

Global Daytime Distribution of Overlapping Cirrus Cloud from NOAA's Advanced Very High Resolution Radiometer

Data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) instrument are used to provide the mean July and January global daytime distributions of multilayer cloud, where multilayer cloud is defined as cirrus overlapping one or more lower layers. The AVHRR data was taken from multiple years that were chosen to provide data with a const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016